Variable Threshold MOSFET Approach (Through Dynamic Threshold MOSFET) For Universal Logic Gates

نویسندگان

  • K. Ragini
  • M. Satyam
  • B. C. Jinaga
چکیده

In this article, we proposed a Variable threshold MOSFET(VTMOS)approach which is realized from Dynamic Threshold MOSFET(DTMOS), suitable for sub-threshold digital circuit operation .Basically the principle of subthreshold logics is operating MOSFET in sub-threshold region and using the leakage current in that region for switching action, there by drastically decreasing power .To reduce the power consumption of sub-threshold circuits further, a novel body biasing technique termed VTMOS is introduced .VTMOS approach is realized from DTMOS approach. Dynamic threshold MOS (DTMOS) circuits provide low leakage and high current drive, compared to CMOS circuits, operated at lower voltages. The VTMOS is based on operating the MOS devices with an appropriate substrate bias which varies with gate voltage, by connecting a positive bias voltage between gate and substrate for NMOS and negative bias voltage between gate and substrate for PMOS. With VTMOS, there is a considerable reduction in operating current and power dissipation, while the remaining characteristics are almost the same as those of DTMOS. Results of our investigations show that VTMOS circuits improves the power up to 50% when compared to CMOS and DTMOS circuits, in subthreshold region.. The performance analysis and comparison of VTMOS , DTMOS and CMOS is made and test results of Power dissipation, Propagation delay and Power delay product are presented to justify the superiority of VTMOS logic over conventional sub-threshold logics using Hspice Tool. . The dependency of these parameters on frequency of operation has also been investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Threshold Voltage Computations for 22 nm Silicon-on-Diamond MOSFET Incorporating a Second Oxide Layer

In this paper, for the first time, an analytical equation for threshold voltage computations in silicon-on-diamond MOSFET with an additional insulation layer is presented; In this structure, the first insulating layer is diamond which covered the silicon substrate and second insulating layer is SiO2 which is on the diamond and it is limited to the source and drain on both sides. Analytical solu...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

On the Reliability of Interconnected CMOS Gates Considering MOSFET Threshold-Voltage Variations

This paper discusses the effects of MOSFET threshold voltage variations on the reliability of nanometer-scale CMOS logic gates. The reliability is quantified in terms of the probability-of-failure of individual CMOS gates, which is obtained from extensive Monte Carlo simulations of these gates. The study considers different nano-scale CMOS technology generations and compares the effect of thres...

متن کامل

Impact of Height of Silicon Pillar on Vertical DG-MOSFET Device

Vertical Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is believed to suppress various short channel effect problems. The gate to channel coupling in vertical DG-MOSFET are doubled, thus resulting in higher current density. By having two gates, both gates are able to control the channel from both sides and possess better electrostatic control over the channel. In o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1003.6030  شماره 

صفحات  -

تاریخ انتشار 2010